We beginnen deze cursus met een korte geschiedenisles over Artificial Intelligence. Er worden een aantal programmeervoorbeelden gegeven waar je thuis verder mee kan spelen, maar het is niet de focus van de cursus.
Daarna duiken we die in Machine Learning. We gebruiken de titanic-dataset, wat een beetje de hello-world dataset is voor machine learning.
We maken eerst een random forecaster. Dat is een erg slecht model, maar het zorgt ervoor dat we alle stappen al eens doorlopen (data inlezen, model trainen, getraind model exporteren, een streamlit-web app maken waarin we ze hosten).
Daarna gebruiken we PyCaret om het model te verbeteren. PyCaret is een library die het hele machine learning proces automatiseert. Het traint een hele hoop modellen en geeft dan aan welk van die modellen het beste zou zijn voor onze data. Er komt ook een model uit dat we terug naar onze web app uitrollen.
De volgende stap is dat we zelf een model maken. Dit geeft ons een beter inzicht in de verschillende stappen die PyCaret van ons overnam waardoor we het proces beter begrijpen.
Tenslotte grijpen we in op onze data. Kunnen wij met ons gezond verstand bepaalde ingrepen doen op de data die ervoor zorgen dat het model er meer van kan maken, bijvoorbeeld door missende data bij op te vullen of rijen met duidelijk foute data te verwijderen. Hiermee gaan we in het domein van de data science.
Op de tweede opleidingsdag doen we het hele proces nog eens opnieuw, maar dan met tijdsgerelateerde data.
Werking
De cursus is erg hands-on. Dit heeft voor- en nadelen. Voordeel is dat je zelf code hebt gemaakt die werkt en een model hebt gebruikt in een praktische setting. Het nadeel is dat het een doe-cursus wordt: je moet echt zelf aan de slag. Dat maakt het geheel minder geschikt voor cursisten met een beperkte achtergrond in programmeren.
Hardware
Tijdens deze opleiding werk je op je eigen laptop: vergeet deze dus zeker niet mee te brengen. Heb je geen laptop: geen probleem: er staan ook een aantal vaste PC’s in het opleidingslokaal. Geef het wel even aan bij je inschrijving.
Als software gebruiken we Python en Jupyter notebooks in Visual Studio Code. De installatie hiervan brengen we tijdens de cursus in orde.
Lesmomenten
Dit is een tweedaagse opleiding die doorgaat op: Do 15/05 en 22/05/2025
Lessen van 09:30 tot 16:30